Pervasive nanoscale deformation twinning as a catalyst for efficient energy dissipation in a bioceramic armour.

نویسندگان

  • Ling Li
  • Christine Ortiz
چکیده

Hierarchical composite materials design in biological exoskeletons achieves penetration resistance through a variety of energy-dissipating mechanisms while simultaneously balancing the need for damage localization to avoid compromising the mechanical integrity of the entire structure and to maintain multi-hit capability. Here, we show that the shell of the bivalve Placuna placenta (~99 wt% calcite), which possesses the unique optical property of ~80% total transmission of visible light, simultaneously achieves penetration resistance and deformation localization via increasing energy dissipation density (0.290 ± 0.072 nJ μm(-3)) by approximately an order of magnitude relative to single-crystal geological calcite (0.034 ± 0.013 nJ μm(-3)). P. placenta, which is composed of a layered assembly of elongated diamond-shaped calcite crystals, undergoes pervasive nanoscale deformation twinning (width ~50 nm) surrounding the penetration zone, which catalyses a series of additional inelastic energy dissipating mechanisms such as interfacial and intracrystalline nanocracking, viscoplastic stretching of interfacial organic material, and nanograin formation and reorientation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten.

Twinning is a fundamental deformation mode that competes against dislocation slip in crystalline solids. In metallic nanostructures, plastic deformation requires higher stresses than those needed in their bulk counterparts, resulting in the 'smaller is stronger' phenomenon. Such high stresses are thought to favour twinning over dislocation slip. Deformation twinning has been well documented in ...

متن کامل

Effect of surface energy on size-dependent deformation twinning of defect-free Au nanowires.

In this study, we report the size-dependent transition of deformation twinning studied using in situ SEM/TEM tensile testing of defect-free [110] Au nanowires/ribbons with controlled geometry. The critical dimension below which the ordinary plasticity transits to deformation twinning is experimentally determined to be ∼170 nm for Au nanowires with equilateral cross-sections. Nanoribbons with a ...

متن کامل

Palladium Loaded on Magnetic Nanoparticles as Efficient and Recyclable Catalyst for the Suzuki- Miyaura Reaction

Palladium is the best metal catalyst for Suzuki cross coupling reaction for synthesize of unsymmetrical biaryl compounds. But its high cost limits its application in wide scale. Using of nanoscale particles as active catalytic cites is a good approach for reducing needed noble metal. By loading precious nanoparticles on magnetic nanocores as a support, recycling and reusing of catalyst will be ...

متن کامل

Energy Efficient Novel Design of Static Random Access Memory Memory Cell in Quantum-dot Cellular Automata Approach

This paper introduces a peculiar approach of designing Static Random Access Memory (SRAM) memory cell in Quantum-dot Cellular Automata (QCA) technique. The proposed design consists of one 3-input MG, one 5-input MG in addition to a (2×1) Multiplexer block utilizing the loop-based approach. The simulation results reveals the excellence of the proposed design. The proposed SRAM cell achieves 16% ...

متن کامل

The effect of twinning on texture evolution during ECAP processing of an AM30 magnesium alloy

An AM30 magnesium alloy was processed through ECAP method at 200 °C. Optical and transmission electron microscopy as well as electron back scattered diffraction (EBSD) technique were employed to characterize the deformed microstructure. A partially recrystallized microstructure including ultrafine/nano structures was obtained. The area fraction of 49% was measured for the recrystallized regions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature materials

دوره 13 5  شماره 

صفحات  -

تاریخ انتشار 2014